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Theoretical Investigation of One-Dimensional
Cavities in Two-Dimensional Photonic Crystals

Stavroula Foteinopoulou and Costas M. Soukoulis

Abstract—We study numerically the features of the resonant
peak of one-dimensional (1-D) dielectric cavities in a two-dimen-
sional (2-D) hexagonal lattice. We use both the transfer matrix
method and the finite difference time-domain (FDTD) method
to calculate the transmission coefficient. We compare the two
methods and discuss their results for the transmission and quality
factor of the resonant peak. We also examine the dependence of

on absorption and losses, the thickness of the sample, and the
lateral width of the cavity. The -factor dependence on the width
of the source in the FDTD calculations is also given.

Index Terms—Cavity, photonic crystals, quality factor, reso-
nance.

I. INTRODUCTION

I N SEMICONDUCTOR crystals, the presence of the
periodic potential affects the properties of the electrons.

Likewise in photonic crystals (PCs) that are periodic dielectric
arrangements in one, two, or three dimensions, the properties
of the photon can be controlled. For certain frequency regions
known as “the photonic bandgap,” propagation of electromag-
netic waves is prohibited in the PC [1]–[4]. A defect present
in an otherwise periodic crystal may introduce one or more
propagation modes in the bandgap and forms a cavity. Cavities
of different geometries can exist in a PC and the resulting res-
onant mode can be classified into two general types indicating
whether it drops from the “air” (higher) band or raises from
the “dielectric” (lower) band [5]. The first type is associated
with defects corresponding to the removal of dielectric material
while the second corresponds to defects involving the addition
of dielectric material. The features of the resonant mode will
depend on both the bulk crystal and the cavity characteristics
and can so be tuned accordingly [1]–[3], [5].

An important virtue of the PC cavity is that it can control
the atomic spontaneous emission, while metallic cavities for
the related frequency range are generally lossy [6]–[8]. Spon-
taneous emission is important for a number of semiconductor
devices [9]. Resonant cavities have undergone extensive studies
[8], [10]–[13], both theoretical and experimental. A variety of
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applications incorporating a PC cavity have been suggested or
reported [14]–[16], such as optical laser components [1]–[3],
optical filters [5], single-mode light-emitting diode [9], [17],
and optical imaging [18].

In this paper, we focus on the theoretical study of an 1-D
dielectric cavity in between a hexagonal patterned region of
air cylinders in a dielectric matrix for the case of polariza-
tion (magnetic field along the cylinder axis). We will present
the cavity mode frequency versus the cavity length () (see
Fig. 1), as well as the quality factor () of the modes versus
their corresponding frequency. The quality factor is defined as

where is the frequency of the resonant peak and
is the width of the resonance at transmission half of its max-
imum value. In our case, the quality factorof the resonance
is relatively small ( 200), and other methods of determining the

factor (such as from the energy decay of the resonance [19])
give similar results. The dependence of the resonant mode on the
size of the system (in the lateral direction and in the direction
of propagation) will be also shown. In our calculations, two dif-
ferent numerical techniques (the transfer matrix and the FDTD)
are used and the results of the two methods are compared and
discussed. With both techniques, we calculate the transmission
through the structure and from that we obtain all the relevant
features of the resonant mode.

In Section II, we describe briefly the two calculational
methods. In Section III, we present and discuss our calcula-
tional results concerning the quality factor and position of the
cavity resonance. We also compare the latter with the values
obtained from the experiment previously performed on the
structure under study [20]. In Section IV, we give a summary
of our results.

II. CALCULATIONAL METHODS

The first technique we use is the transfer matrix method
(TMM) developed by Pendry [21], [22]. In the TMM, a grid
lattice is used to discretize the space, and the structure is
divided into finite blocks along the propagation direction.
With the use of Maxwell’s equations, that are solved on the
grid lattice, the electric and magnetic field can be integrated
throughout the blocks and so the respective transmission
coefficient can be calculated. The final transmission will result
by combining those for the individual blocks. In the TMM, the
modeled structure is finite in the propagation direction () but
infinite the directions (where is the direction of the air
cylinders), and the incoming electromagnetic wave is a plane
wave. The structure is embedded in a medium with a dielectric
constant equal to the background dielectric constant to simulate
the experiment [20].
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Fig. 1. The cavity structure under study. The bulk crystals symmetry directions�M and�K are shown.L refers to the cavity width. For the actual crystal,
2b =

p
3a, but in the TMM, due to necessary approximations,2b = 1:7a.L is the lateral width of the cavity whileL is the thickness of the cavity system.

The second method we use is the finite-difference time-do-
main (FDTD) technique [19], [23]. The real space is discretized
on a grid lattice and Maxwell’s equations are solved in the time
domain. The electric and magnetic fields are updated in every
point of the grid lattice in finite time steps. The structure is infi-
nite in the direction of the cylinders (direction) but has finite
size in both the and directions and is embedded in a finite
sized (in and ) dielectric slab with a dielectric constant equal
to that of the matrix medium. Liao absorbing boundary condi-
tions [24] are applied at the walls of the slab to avoid reflections.
The source is a pulse, located close to , ( being
the direction of propagation), has a finite length, and generates
fields with a trapezoidal (extended with Gaussian tails) profile
in space. To calculate the transmission, a line detector is placed
along the lateral direction after the structure. The component
that is perpendicular to the detector of the Poynting vector (for
the Fourier transformed fields) is taken and averaged over the
detector. This is normalized with the respective value for the
same detector but positioned close to the source in the absence
of the structure (to avoid corrupting the data with reflections)
and yields the transmission of the structure.

In both methods the quality factor is calculated from the trans-
mission versus frequency data from where is the fre-
quency of the resonant peak andis the width of the resonance
at transmission half of its maximum.

The two methods differ not only in the calculational approach
but also in the characteristics of the source of the incoming EM
waves, and in the lateral size of the sample that is simulated.
We also performed calculations using the FDTD method but ap-
plying Bloch (periodic) boundary conditions in the lateral ()
direction to have conditions similar to those for the transfer ma-
trix. The source that is used in the latter case is still a pulse but
with a plane-wave front.

III. RESULTS

In Fig. 1, the cross section of the cavity structure under study
with the – plane can be seen. It corresponds to air cylinders
( ) in a GaAs background ( ) (the value of

the GaAs dieletric constant for 1000 nm is assumed in the
calculations for simplicity). The whole cavity structure is em-
bedded in GaAs ( ). The symmetry directions of the bulk
crystal are also shown. With , we will refer to the cavity width
that corresponds to the length of the dielectric defect introduced
along the propagation direction. With , we will refer to the
lateral width of the cavity (which is the same as the sample’s
lateral width). will be the number of rows on each side of
the cavity ( for both calculations and experiment). The
thickness of the sample then along the propagation direction
would be , where (but is approxi-
mated with in the TMM for numerical reasons). (Such an
approximation introduces an error of at most 3% in the posi-
tion of the resonance and does not affect the quality factor.) The
radius of the air holes is ( being the lattice
constant) that corresponds to a filling factor of0.285. (Actu-
ally in the TMM because of the approximation mentioned above
the simulated structure will have a slightly larger filling factor).
No specific value for the lattice constantis assumed. All of the
band gap and transmission properties in a PC scale with the lat-
tice constant , so all the subsequent results will be presented in
dimensionless units of frequency (reduced frequency )
and length.

From the transfer matrix results for the various, we ob-
served that the spectral gap when the cavity is introduced is
wider than the one for the periodic crystal. Such widening of
the gap was also observed in [13] when a defect is introduced by
removal of two rows of sites in a periodic 2-D system of dielec-
tric rods in air background. TMM calculations have been per-
formed for cavity structures with dimensionless ranging
from 0.15 to 2.0. At a certain frequency, different resonances
(peaks) can occur corresponding to differentvalues. Each of
these peaks is characterized by an order that basically indicates
the order at which a resonant peak appears at this specific fre-
quency while is increasing.

In Fig. 2, every cavity width (in units of ) is plotted as
a function of the corresponding reduced frequency of the ob-
served peak and three different curves are recovered for the
three orders of the resonant peaks. Starting from the lower to
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Fig. 2. Cavity width versus the reduced frequency of the corresponding
observed cavity resonant peaks. The results are obtained with the TMM
(solid dotted and dot-dashed line). The experimental results for various lattice
constantsa are shown for comparison. The stars, circles, squares, triangles
(left), andx are fora = 200, 210, 220, 230, and 240 nm, respectively.

the higher curve in Fig. 2, the peaks are the first-, second-, and
third-order, respectively. It will be seen later that peaks of the
same frequency but different order can have different features
(e.g., quality factor). It is evident from Fig. 2 that for certain
values more than one resonant peak can appear within the gap.
The experimental results [20] for the resonant peaks for var-
ious lattice constants ( 200 nm, 210 nm, 220 nm, 230 nm,
240 nm) are also included in the figure. The agreement is gen-
erally good but there seems to be a small discrepancy that in-
creases with the frequency. This can be attributed to the fact that
we have taken the GaAs dielectric constant not to vary with the
frequency (for simplicity the value at1000 nm is taken in our
calculations) while this is not the case in the actual system. This
difference in the dielectric will slightly alter the position of the
peaks [20]. This is consistent with the fact that the discrepancy
at the higher end of the reduced frequencies seems to be a little
larger for the smaller lattice constant (the corresponding wave-
length differs more from the value of a 1000 nm). There are also
some experimental peaks for nm that are falling above
the theoretical curves as, for example, the first-order peaks with

from 0.60 to 0.85. We have not numerically calculated
the s for these, because they lie too close to the band edges
and the determination of their quality factor can be vague and
so we have not included them in Fig. 2.

We compare now the two computational methods (TMM and
FDTD) that are used to simulate the cavity structure. There
are basically three fundamental differences between the two
methods. The first one is that the transfer matrix technique is a
time-independent method while for FDTD the fields are solved
in time domain. Also, in the TMM, the structure is infinite in

by virtue of the periodic boundary conditions applied along
this direction, while in the FDTD the system is finite in the–
plane bounded by the absorbing boundary conditions. Finally,
the incoming electromagnetic fields in the TMM framework are
extended plane waves incident on the whole– boundary (cor-
responding to a source infinite in width) while in the FDTD

Fig. 3. Comparison between transmission results obtained with the
TMM technique (solid line) and the FDTD (dotted line with circles), for
L =a = 0:85. In order to make the comparison in this particular case, we
considered an approximate triangular structure(2b = 1:7a) in the FDTD
method too.

a pulse emitted from a source with finite width is considered.
Also, the way the transmission coefficient is obtained is dif-
ferent in the two methods. In the TMM, it is calculated from
the transfer matrix using the field values while in the FDTD it is
calculated from the energy ratio that passes through the crystal
along the propagation direction. In order to make the compar-
ison between the two methods in this particular FDTD calcula-
tion, the 2-D space is discretized as in the transfer matrix which
gives instead of . The results for one particular
cavity width are shown in Fig. 3. Good agreement is found be-
tween the two methods regarding the positions of the resonant
peak and the bandgap edges but there is a small discrepancy in
the quality factor of the peak.

It is interesting therefore to see how the quality factor of
the resonant peak is affected by the finiteness of the size of
the system and the width of the source, in our FDTD calcula-
tions. This can be seen in Fig. 4(a) and (b) where the quality
factor versus the lateral width of the sample () and versus
the source width are shown, respectively. In Fig. 4(a), the ratio
of the source width over the lateral extent of the structure
(defined in Fig. 1) is kept constant (equal to 0.5). It can be seen
that, as the lateral width approaches , saturates at a value

170. In Fig. 4(b) we present results of theversus the source
width for a system with a lateral width of . The width

is large enough for the quality factor to have reached its sat-
uration value (which is related to the lateral size) so that one
can see the dependence on the source width only. It is clearly
seen that for a small source width the quality factor drops sig-
nificantly. From the data shown in Fig. 4(a) and (b), it can there-
fore be argued that the finiteness of the source or the system’s
lateral size or both give 2-D characteristics in what would es-
sentially be a 1-D resonance for the infinite system and result in
a reduced quality factor. By an infinite system, we mean an infi-
nite lateral size and that the incoming waves have a plane wave
front. In our system, when the lateral size is small the resonance
is supported by a smaller number of scatterers and is forced to
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Fig. 4. (a) Quality factorQ for a structure with a widthL =b = 1. (2b =
p
3a

is taken) calculated with the FDTD versusL (in units ofa) (see Fig. 1). The
source is chosen to have a length approximately half of the lateral length of
the structure for allL . (b) Quality factorQ calculated with the FDTD (solid
line with circles) with the sameL =b as in (a), versus the source width (in
units of a). L is kept constant and equal to40a. In both (a) and (b), the
bold dotted line represents the value of the quality factor calculated with the
same method but with periodic (Bloch) boundary conditions along the lateral
direction (i.e., perpendicularly to the propagation direction). The source used in
the calculations corresponding to that case is a pulse but with plane wave front.
The horizontal solid line is the TMM result.

terminate at the edges. Also, when the system is large but the
source is small, the resonance occupies a smaller fraction of the
cavity area and has a magnitude that decreases as one moves
away from the center of the resonance. The resonance can decay
in time not only along the propagation direction, as the true
1-D resonance does, but also along the lateral direction. In both
cases (small lateral width or small source), the result would be
a smaller quality factor. Now, for the case when both the system
and the source are very large, the resonance can be extended
in the cavity region and be very close to the 1-D resonance. As
seen in Fig. 4(b), for a source width equal to and ,
the quality factor is . That value is close to which is
the value of the quality factor as obtained from the FDTD that
models the infinite system (Bloch boundary conditions) (dotted
horizontal line in Fig. 4). The solid horizontal lines in Fig. 4(a)
and (b) give the quality factor for the infinite system as ob-
tained from the TMM. The respective value is230. We have
also looked at the dependence of the quality factor on the lateral
width and kept the width of the source constant and equal to.
What we found was that the quality factor increases as the lat-
eral width increases, reaches a maximum value, then starts to de-
crease and eventually saturates. This is the result of a combined
effect. As described previously, when the lateral width is small
this causes the resonant peak to terminate at the edges. As the
lateral width increases, the resonance occupies the maximum
area it can—according to the specific source width. Increasing
further the lateral width will not cause the resonance to occupy
more of the cavity along the lateral direction. It only allows it
to decay in time along the direction as well and therefore the
quality factor starts to lessen.Another component that can cause
the quality factor to decrease with decreasing source width is

Fig. 5. (a) Transmission calculated by the TMM versus reduced frequency
u = a=� for different values ofIm � of the air dielectric.L =a = 0:985 on the
cavity resonance (forN = 4). (b) Dimensionless linewidth (� is �� i.e., the
wavelength width that corresponds to transmission half of the peak’s maximum)
versusN (number of rows in each side of the cavity) for the lossless case as
well as the cases with nonzero imaginary part in the air dielectric constant.

the angle span of the source that increases with the decreasing
source width. This would cause the peak to shift and broaden
(toward the higher frequencies). We have numerically checked
that the magnitude for the off-normal components of the in-
coming wave is relatively small. Also, we have not observed
significant shift in frequency with decreasing source width in
the FDTD results. We have observed though that the height of
the transmission peak decreases as the source width decreases.
It approaches the value of one as the source width approaches
the lateral size of the system (for the large system ).
It becomes one for the infinite system modeled either through
the TMM or the FDTD with Bloch boundary conditions in the
lateral direction of the crystal.

Fig. 5(a) shows the transmission calculated with the TMM
method versus the reduced frequency for a 1-D cavity
of width and , for different imaginary
parts in the air dielectric constant. Introducing imaginary parts
with values of 0.02–0.05 in the air dielectric constant in the
TMM system, has been suggested as a mechanism to model
out of plane losses in [20]. This leads as well to a reduced
factor value. is the number of rows of air cylinders in each
side of the 1-D dielectric cavity. As expected the transmission
peak decreases with Imwhile the width of the transmission
increases with Im. We have also examined how the size of the
system along the propagation direction affects the characteris-
tics of the resonance. In Fig. 5(b), the dimesionless linewidth

—which is defined as (where is the width in wave-
length of the resonance at the half maximum value)—is plotted
versus (the number of rows of cylinders on each side of
the dielectric cavity) on a semi-logarithmic scale. As mentioned
previously, is related to the thickness of the system
through the relation ( is shown in Fig. 1).

A linear relation on the semi-log scale between with
is obtained, meaning that the quality factor, which is in-

versely proportional to , would increase exponentially with
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Fig. 6. Transmission height of the resonance forL =a = 0:985 for
three values of the imaginary part of the air dielectric constant,Im �. Two
experimental values for the cavity withN = 4 are shown for comparison.
The star and x correspond toa = 230 nm withL =a = 1:07 anda = 220 nm
with L =a = 0:98, respectively.

. That is consistent with the results for other defect cavities
[13], [25]. In Sigalaset al. [13], where an air defect in a di-
electric array is studied, it was shown that when absorption is
introduced in the dielectric the quality factor saturates and does
not increase any further as the size of the system increases. Such
saturation with the introduction of an imaginary part in the di-
electric of the holes is observed in our case also, as can be seen
in Fig. 5(b). We also observe (as in [13]) that the saturation value
of the linewidth is smaller, the larger the imaginary part in the
dielectric.

In Fig. 6, we present the results achieved with the TMM of
the transmission height versus for a 1-D cavity of width

for three different values of of the air di-
electric. Notice that for the height is always one, i.e.,
perfect transmission. However, for a nonzero value of, the
transmission height drops as increases. Two experimental
values are shown for almost the same width of as the one
in the calculations. Notice that this suggests that the that
can fit the experimental data [20] can have a value close to 0.04.

For the ideal case with no losses present, the quality factor
was calculated by the TMM for various cavity widths that
led to peaks that span most of the bandgap. In Fig. 7, the
quality factor is plotted versus the reduced frequency of the
peak. (Peaks too close to the edges of the bandgap were not
used because the determination of theirwould be vague
as stated earlier in this paper). For every frequency in the
plot, there are three peaks that are characterized by different
orders and correspond to different values (see Fig. 2). So
three different curves are recovered when grouping the peaks
according to order. Higher order peaks are characterized by a
higher value of the quality factor. For every order, the quality
factor is maximum for a frequency close to the center of the
bandgap and reduces as the frequency approaches either edge
of the bandgap. The calculations above were performed with
a grid lattice dividing the lattice constantinto ten intervals.
We have investigated the dependence of the quality factor with
the accuracy of the TMM given by the numberof intervals
the lattice constant is divided into, i.e., is the number of grid

Fig. 7. Quality factor calculated with the TMM versus the reduced frequency
for first-, second-, and third-order resonant peaks.

Fig. 8. (a) Quality factor for three different cavity peaks with reduced
frequenciesu = 0:2255 (solid line), u = 0:2063 (dotted line), and
u = 0:2628 (dotted-dashed line) versus1=N , whereN is the number of
grid spacings that the lattice constanta is divided into in the computation.
The peaks atu = 0:2255 andu = 0:2063 are second-order peaks and have
L =a = 0:985 andL =a = 1:2, respectively. The peak atu = 0:2628 is of
third order (withL =a = 1:2). The quality factor saturates at a value as the
numerical accuracy of the method increases. (b) Quality factor forLc=b = 1.
As a function of the grid accuracy calculated from the FDTD method with
Bloch boundary conditions across the lateral direction (solid line with squares)
and from the TMM (solid line with circles).

points. It was done for three different peaks. One close to the
band gap center and the others close to the lower and higher
frequency band edge respectively. It is seen from Fig. 8(a)
that the quality factor increases with increasing accuracy and
eventually saturates at a value. The same holds for the quality
factor calculated from the FDTD method. This is shown in
Fig. 8(b) for a cavity spacer value . The FDTD data of
Fig. 8(b) are obtained with Bloch boundary conditions applied
in the lateral ( ) direction. This way one has an infinite source
with a plane wave front as in the TMM. The saturation values
of the -factor for the TMM and FDTD are 230 and 250
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respectively. This difference might be due to the different ways
of calculating the transmission coefficient in the two methods
as was mentioned before in Section III.

IV. CONCLUSION

We have studied the properties of 1-D dielectric cavity struc-
ture in a 2-D hexagonal array with the transfer matrix method
and the finite difference time domain method. Both methods
agree in the position of the defect peak and both yield good
agreement (for the peak’s position) with the experiment [20] as
well. The quality factor though shows sensitivity to a lot of pa-
rameters such as the size of the system (both lateral and along
the propagation direction), the type of the incoming electromag-
netic fields and losses out of the plane of periodicity. In that
context the two numerical methods (FDTD and TMM) were
compared.
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